

Windows App SDK

Stick Control

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/tutorials/

1

Stick Control

Stick Control shows how to create a Directional Stick that can be used for selecting an Angle and Ratio

using Windows App SDK

Step 1

Follow Setup and Start on how to get Setup and Install what you need for Visual Studio 2022 and

Windows App SDK.

In Windows 11 choose Start and then find or

search for Visual Studio 2022 and then select it.

Once Visual Studio 2022 has started select

Create a new project.

Then choose the Blank App, Packages (WinUI

in Desktop) and then select Next.

After that in Configure your new project type

in the Project name as StickControl, then select

a Location and then select Create to start a new

Solution.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

2

Step 2

Then in Visual Studio within Solution Explorer for the Solution, right click on the Project shown below

the Solution and then select Add then New Item…

Step 3

Then in Add New Item from the C# Items list, select Code and then select Code File from the list next to

this, then type in the name of Stick.cs and then Click on Add.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

3

Step 4

Then from Solution Explorer for the Solution

double-click on Stick.cs to see the Code for the

User Control.

Step 5

You will now be in the View for the Code of Stick.cs, within this type in the following Code:

There are using statements for the User Control, a namespace for StickControl along with a class of

Stick that will represent the User Control for the Directional Stick.

using Microsoft.UI;
using Microsoft.UI.Xaml;
using Microsoft.UI.Xaml.Controls;
using Microsoft.UI.Xaml.Data;
using Microsoft.UI.Xaml.Input;
using Microsoft.UI.Xaml.Media;
using Microsoft.UI.Xaml.Shapes;
using System;

namespace StickControl;

public class Stick : Grid
{
 // Members & Event

 // Dependency Properties

 // Properties

 // ToRadians, ToDegrees, SetMiddle, & GetCircle Methods

 // Move Method

 // Layout & Load Methods and Constructor

}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

4

Step 6

Then in the namespace of StickControl in the class of Stick after the Comment of // Members &

Event type the following Members and Event:

Members include Ellipses needed to represent the different directional parts of the Directional Stick and

there is also a delegate along with an event for when the Directional Stick is interacted with.

private bool _capture;
private Ellipse _knob;
private Ellipse _face;
private double x = 0;
private double y = 0;
private double _m = 0;
private double _res = 0;
private double _width = 0;
private double _height = 0;
private double _alpha = 0;
private double _alphaM = 0;
private double _centreX = 0;
private double _centreY = 0;
private double _distance = 0;
private double _oldAlphaM = -999.0;
private double _oldDistance = -999.0;

public delegate void ValueChangedEventHandler(
 object sender, double angle, double ratio);
public event ValueChangedEventHandler ValueChanged;

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

5

Step 7

While still in the namespace of StickControl in the class of Stick after the Comment of //

Dependency Properties type the following Dependency Properties:

There will also be some Errors as these refer to Properties that will be added in the next step.

These Dependency Properties refer to various Properties of the Directional Stick that can be customised

for the User Control.

public static readonly DependencyProperty RadiusProperty =
DependencyProperty.Register(nameof(Radius), typeof(int),
typeof(Stick), new PropertyMetadata(100));

public static readonly DependencyProperty KnobProperty =
DependencyProperty.Register(nameof(Knob), typeof(Brush),
typeof(Stick), new PropertyMetadata(new SolidColorBrush(Colors.Red)));

public static readonly DependencyProperty FaceProperty =
DependencyProperty.Register(nameof(Face), typeof(Brush),
typeof(Stick), new PropertyMetadata(new SolidColorBrush(Colors.Black)));

public static readonly DependencyProperty AngleProperty =
DependencyProperty.Register(nameof(Angle), typeof(double),
typeof(Stick), null);

public static readonly DependencyProperty RatioProperty =
DependencyProperty.Register(nameof(Ratio), typeof(double),
typeof(Stick), null);

public static readonly DependencyProperty SensitivityProperty =
DependencyProperty.Register(nameof(Sensitivity), typeof(double),
typeof(Stick), null);

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

6

Step 8

While still in the namespace of StickControl in the class of Stick after the Comment of //

Properties type the following Properties:

All previous Errors should now be resolved, however there will be just one for a Method of Load which will

be resolved in a future step but if you are getting any others check any previous steps to see if you have

missed anything.

These Properties are for values for the User Control such as the Angle or Ratio values for the Directional

Stick.

public int Radius
{
 get { return (int)GetValue(RadiusProperty); }
 set { SetValue(RadiusProperty, value); Load(); }
}

public Brush Knob
{
 get { return (Brush)GetValue(KnobProperty); }
 set { SetValue(KnobProperty, value); }
}

public Brush Face
{
 get { return (Brush)GetValue(FaceProperty); }
 set { SetValue(FaceProperty, value); }
}

public double Angle
{
 get { return (double)GetValue(AngleProperty); }
 set { SetValue(AngleProperty, value); }
}

public double Ratio
{
 get { return (double)GetValue(RatioProperty); }
 set { SetValue(RatioProperty, value); }
}

public double Sensitivity
{
 get { return (double)GetValue(SensitivityProperty); }
 set { SetValue(SensitivityProperty, value); }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

7

Step 9

While still in the namespace of StickControl in the class of Stick after the Comment of //

ToRadians, ToDegrees, SetMiddle, & GetCircle Methods type the following Methods:

The Methods of ToRadians and ToDegrees will perform the relevant conversions, SetMiddle will

determine the centre point of the Directional Stick and GetCircle will create an Ellipse with a Binding

for the Fill.

private static double ToRadians(double angle) =>
 Math.PI * angle / 180.0;

private static double ToDegrees(double angle) =>
 angle * (180.0 / Math.PI);

private void SetMiddle()
{
 _capture = false;
 Canvas.SetLeft(_knob, (Width - _width) / 2);
 Canvas.SetTop(_knob, (Height - _height) / 2);
 _centreX = Width / 2;
 _centreY = Height / 2;
}

private Ellipse GetCircle(double dimension, string path)
{
 var circle = new Ellipse()
 {
 Height = dimension,
 Width = dimension
 };
 circle.SetBinding(Shape.FillProperty, new Binding()
 {
 Source = this,
 Path = new PropertyPath(path),
 Mode = BindingMode.TwoWay
 });
 return circle;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

8

Step 10

While still in the namespace of StickControl in the class of Stick after the Comment of // Move

Method type the following Method:

The Method of Move will be used by the Directional Stick to determine the current Angle and Ratio

along with raising the Event of ValueChanged with those values.

private void Move(PointerRoutedEventArgs e)
{
 x = e.GetCurrentPoint(this).Position.X;
 y = e.GetCurrentPoint(this).Position.Y;
 _res = Math.Sqrt((x - _centreX) *
 (x - _centreX) + (y - _centreY) * (y - _centreY));
 _m = (y - _centreY) / (x - _centreX);
 _alpha = ToDegrees(Math.Atan(_m) + Math.PI / 2);
 if (x < _centreX)
 _alpha += 180.0;
 else if (x == _centreX && y <= _centreY)
 _alpha = 0.0;
 else if (x == _centreX)
 _alpha = 180.0;
 if (_res > Radius)
 {
 x = _centreX + Math.Cos(ToRadians(_alpha) - Math.PI / 2) * Radius;
 y = _centreY + Math.Sin(ToRadians(_alpha) - Math.PI / 2) * Radius
 * ((_alpha % 180.0 == 0.0) ? -1.0 : 1.0);
 _res = Radius;
 }
 if (Math.Abs(_alpha - _alphaM) >= Sensitivity ||
 Math.Abs(_distance * Radius - _res) >= Sensitivity)
 {
 _alphaM = _alpha;
 _distance = _res / Radius;
 }
 if (_oldAlphaM != _alphaM ||
 _oldDistance != _distance)
 {
 Angle = _alphaM;
 Ratio = _distance;
 _oldAlphaM = _alphaM;
 _oldDistance = _distance;
 ValueChanged?.Invoke(this, Angle, Ratio);
 }
 Canvas.SetLeft(_knob, x - _width / 2);
 Canvas.SetTop(_knob, y - _height / 2);
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

9

Step 11

While still in the namespace of StickControl in the class of Stick after the Comment of // Layout &

Load Methods and Constructor type the following Methods and Constructor:

All Errors should now be resolved, if you continue to get them check any previous steps to see if you have

missed anything.

The Constructor will be used to create the look-and-feel of the User Control and will use the Method of

Load which will use the Method of Layout which will capture if the User Control is being interacted with.

private void Layout()
{
 _knob = GetCircle(Radius, "Knob");
 _face = GetCircle(Radius * 2, "Face");
 _height = _knob.ActualHeight;
 _width = _knob.ActualWidth;
 Width = _width + Radius * 2;
 Height = _height + Radius * 2;
 SetMiddle();
 PointerExited -= null;
 PointerExited += (object sender, PointerRoutedEventArgs e) =>
 SetMiddle();
 _knob.PointerReleased += (object sender, PointerRoutedEventArgs e) =>
 SetMiddle();
 _knob.PointerPressed += (object sender, PointerRoutedEventArgs e) =>
 _capture = true;
 _knob.PointerMoved += (object sender, PointerRoutedEventArgs e) =>
 {
 if (_capture)
 Move(e);
 };
 _knob.PointerExited += (object sender, PointerRoutedEventArgs e) =>
 SetMiddle();
}

private void Load()
{
 Layout();
 Children.Clear();
 Children.Add(_face);
 var canvas = new Canvas()
 {
 Width = Width,
 Height = Height
 };
 canvas.Children.Add(_knob);
 Children.Add(canvas);
}

public Stick() => Load();

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

10

Step 12

Within Solution Explorer for the Solution

double-click on MainWindow.xaml to see the

XAML for the Main Window.

Step 13

In the XAML for MainWindow.xaml there be some XAML for a StackPanel, this should be Removed by

removing the following:

Step 14

While still in the XAML for MainWindow.xaml above </Window>, type in the following XAML:

This XAML contains a StackPanel including a TextBlock and the User Control of Stick with the Event

of ValueChanged.

<StackPanel Orientation="Horizontal"
HorizontalAlignment="Center" VerticalAlignment="Center">
 <Button x:Name="myButton" Click="myButton_Click">Click Me</Button>
</StackPanel>

<StackPanel VerticalAlignment="Center" HorizontalAlignment="Center">
 <TextBlock Name="Label" HorizontalAlignment="Center"
 Style="{StaticResource SubtitleTextBlockStyle}"/>
 <local:Stick Radius="200" Knob="{ThemeResource AccentButtonBackground}"
 Face="WhiteSmoke" ValueChanged="ValueChanged"/>
</StackPanel>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

11

Step 15

Then, within Solution Explorer for the Solution

select the arrow next to MainWindow.xaml

then double-click on MainWindow.xaml.cs to

see the Code for the Main Window.

Step 16

In the Code for MainWindow.xaml.cs there be a Method of myButton_Click(...) this should be

Removed by removing the following:

Step 17

Once myButton_Click(...) has been removed, type in the following Code below the end of the

Constructor of public MainWindow() { ... }:

The Method of ValueChanged will be used with Event Handler from the XAML to display the selected

Angle and Ratio, this Method uses Arrow Syntax with the => for an Expression Body which is useful when a

Method only has one line.

private void myButton_Click(object sender, RoutedEventArgs e)
{
 myButton.Content = "Clicked";
}

private void ValueChanged(object sender, double angle, double ratio) =>
 Label.Text = $"Angle {angle}, Ratio {ratio}";

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

12

Step 18

That completes the Windows App SDK

application. In Visual Studio 2022 from the

Toolbar select StickControl (Package) to Start

the application.

Step 19

Once running you will see the Stick Control displayed, then you can select and move the centre portion of

the Directional Stick and can see the Angle around the centre, or the Ratio of the distance between the

centre and the outside displayed.

Step 20

To Exit the Windows App SDK application,

select the Close button from the top right of the

application as that concludes this Tutorial for

Windows App SDK from tutorialr.com!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://tutorialr.com/

