

Windows App SDK

Ruler Control

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/tutorials/

1

Ruler Control

Ruler Control shows how to create an on-screen Ruler for Metric or Imperial using Windows App SDK

Step 1

Follow Setup and Start on how to get Setup and Install what you need for Visual Studio 2022 and

Windows App SDK.

In Windows 11 choose Start and then find or

search for Visual Studio 2022 and then select it.

Once Visual Studio 2022 has started select

Create a new project.

Then choose the Blank App, Packages (WinUI

in Desktop) and then select Next.

After that in Configure your new project type

in the Project name as RulerControl, then select

a Location and then select Create to start a new

Solution.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

2

Step 2

Then in Visual Studio within Solution Explorer for the Solution, right click on the Project shown below

the Solution and then select Add then New Item…

Step 3

Then in Add New Item from the C# Items list, select Code and then select Code File from the list next to

this, then type in the name of Ruler.cs and then Click on Add.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

3

Step 4

Then from Solution Explorer for the Solution

double-click on Ruler.cs to see the Code for the

User Control.

Step 5

You will now be in the View for the Code of Ruler.cs, within this type in the following Code:

There are using statements for the User Control, a namespace for RulerControl with an enum for the

Units of the Ruler along with a class of Ruler that will represent the User Control.

using Microsoft.UI;
using Microsoft.UI.Xaml;
using Microsoft.UI.Xaml.Controls;
using Microsoft.UI.Xaml.Media;
using Microsoft.UI.Xaml.Shapes;
using Windows.Foundation;

namespace RulerControl;

public enum Units
{
 Cm,
 Inch
};

public class Ruler : Canvas
{
 private const double default_height = 40.0;

 private double _originalHeight;

 // Static Methods

 // Dependency Properties & Properties

 // Layout Method

 // Constructor & Measure Override Event Handler

}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

4

Step 6

Then in the namespace of RulerControl in the class of Ruler after the Comment of // Static

Methods type the following Static Methods:

These Static Methods include CmToDip and InchToDip which will perform the conversions for the

measurements to be displayed on the Ruler to device independent pixels. There is also GetLine which will

return the Path used to display the lines on the Ruler.

private static double CmToDip(double cm) =>
 cm * 96.0 / 2.54;

private static double InchToDip(double inch) =>
 inch * 96.0;

private static Path GetLine(Brush stroke, double thickness,
 Point start, Point finish) => new()
{
 Stroke = stroke,
 StrokeThickness = thickness,
 Data = new LineGeometry()
 {
 StartPoint = start,
 EndPoint = finish
 }
};

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

5

Step 7

While still in the namespace of RulerControl in the class of Ruler after the Comment of //

Dependency Properties & Properties type the following Dependency Properties and Properties:

The Dependency Properties or Properties for the User Control can be customised for the Ruler.

public static readonly DependencyProperty ForegroundProperty =
DependencyProperty.Register(nameof(Foreground), typeof(Brush),
typeof(Ruler), new PropertyMetadata(new SolidColorBrush(Colors.Black)));

public static readonly DependencyProperty LengthProperty =
DependencyProperty.Register(nameof(Length), typeof(double),
typeof(Ruler), new PropertyMetadata(10.0));

public static readonly DependencyProperty SegmentProperty =
DependencyProperty.Register(nameof(Segment), typeof(double),
typeof(Ruler), new PropertyMetadata(20.0));

public static readonly DependencyProperty UnitProperty =
DependencyProperty.Register(nameof(Unit), typeof(double),
typeof(Ruler), new PropertyMetadata(Units.Cm));

public Brush Foreground
{
 get { return (Brush)GetValue(ForegroundProperty); }
 set { SetValue(ForegroundProperty, value); }
}

public double Length
{
 get { return (double)GetValue(LengthProperty); }
 set { SetValue(LengthProperty, value); }
}

public double Segment
{
 get { return (double)GetValue(SegmentProperty); }
 set { SetValue(SegmentProperty, value); }
}

public Units Unit
{
 get { return (Units)GetValue(UnitProperty); }
 set { SetValue(UnitProperty, value); }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

6

Step 8

While still in the namespace of RulerControl in the class of Ruler after the Comment of // Layout

Method type the following Method:

This Method creates the look-and-feel for the User Control for either Metric or Imperial units to be

displayed accordingly for the Ruler.

private void Layout()
{
 Children.Clear();
 for (double value = 0.0; value <= Length; value++)
 {
 double dip;
 if (Unit == Units.Cm)
 {
 dip = CmToDip(value);
 if (value < Length)
 {
 for (int i = 1; i <= 9; i++)
 {
 if (i != 5)
 {
 var mm = CmToDip(value + 0.1 * i);
 Children.Add(GetLine(Foreground, 0.5, new Point(mm, Height),
 new Point(mm, Height - Segment / 3.0)));
 }
 }
 var middle = CmToDip(value + 0.5);
 Children.Add(GetLine(Foreground, 1.0, new Point(middle, Height),
 new Point(middle, Height - Segment * 2.0 / 3.0)));
 }
 }
 else
 {
 dip = InchToDip(value);
 if (value < Length)
 {
 var quarter = InchToDip(value + 0.25);
 Children.Add(GetLine(Foreground, 0.5, new Point(quarter, Height),
 new Point(quarter, Height - Segment / 3.0)));
 var middle = InchToDip(value + 0.5);
 Children.Add(GetLine(Foreground, 1.0, new Point(middle, Height),
 new Point(middle, Height - 0.5 * Segment * 2.0 / 3.0)));
 var division = InchToDip(value + 0.75);
 Children.Add(GetLine(Foreground, 0.5, new Point(division, Height),
 new Point(division, Height - 0.25 * Segment / 3.0)));
 }
 }
 Children.Add(GetLine(Foreground, 1.0, new Point(dip, Height),
 new Point(dip, Height - Segment)));
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

7

Step 9

While still in the namespace of RulerControl in the class of Ruler after the Comment of //

Constructor & Measure Override Event Handler type the following Constructor and Event

Handler:

The Constructor will call the Method of Layout when the User Control has been Loaded and the Event

Handler of MeasureOverride will manage the resizing of the Ruler.

public Ruler() =>
 Loaded += (object sender, RoutedEventArgs e) => Layout();

protected override Size MeasureOverride(Size availableSize)
{
 Height = !double.IsNaN(Height) ? Height : default_height;
 var desiredSize = (Unit == Units.Cm) ?
 new Size(CmToDip(Length), Height) :
 new Size(InchToDip(Length), Height);
 if(Height != _originalHeight)
 {
 Layout();
 _originalHeight = Height;
 }
 return desiredSize;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

8

Step 10

Within Solution Explorer for the Solution

double-click on MainWindow.xaml to see the

XAML for the Main Window.

Step 11

In the XAML for MainWindow.xaml there be some XAML for a StackPanel, this should be Removed by

removing the following:

Step 12

While still in the XAML for MainWindow.xaml above </Window>, type in the following XAML:

This XAML contains a ViewBox including the User Control of Ruler with the Length and Unit set.

<StackPanel Orientation="Horizontal"
HorizontalAlignment="Center" VerticalAlignment="Center">
 <Button x:Name="myButton" Click="myButton_Click">Click Me</Button>
</StackPanel>

<Viewbox Margin="50">
 <local:Ruler Length="15.0" Unit="Cm"
 Background="{ThemeResource SystemControlHighlightAccentBrush}"
 Foreground="{ThemeResource SystemControlBackgroundAltHighBrush}"/>
</Viewbox>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

9

Step 13

Then, within Solution Explorer for the Solution

select the arrow next to MainWindow.xaml

then double-click on MainWindow.xaml.cs to

see the Code for the Main Window.

Step 14

In the Code for MainWindow.xaml.cs there be a Method of myButton_Click(...) this should be

Removed by removing the following:

private void myButton_Click(object sender, RoutedEventArgs e)
{
 myButton.Content = "Clicked";
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

10

Step 15

That completes the Windows App SDK

application. In Visual Studio 2022 from the

Toolbar select RulerControl (Package) to Start

the application.

Step 16

Once running you will see the Ruler Control displayed with the given Length and Unit.

Step 17

To Exit the Windows App SDK application,

select the Close button from the top right of the

application as that concludes this Tutorial for

Windows App SDK from tutorialr.com!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://tutorialr.com/

