

Windows App SDK

Dipad Control

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/tutorials/

1

Dipad Control

Dipad Control shows how to create a Directional Pad that can be used for selecting a Direction using

Windows App SDK

Step 1

Follow Setup and Start on how to get Setup and Install what you need for Visual Studio 2022 and

Windows App SDK.

In Windows 11 choose Start and then find or

search for Visual Studio 2022 and then select it.

Once Visual Studio 2022 has started select

Create a new project.

Then choose the Blank App, Packages (WinUI

in Desktop) and then select Next.

After that in Configure your new project type

in the Project name as DipadControl, then select

a Location and then select Create to start a new

Solution.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

2

Step 2

Then in Visual Studio within Solution Explorer for the Solution, right click on the Project shown below

the Solution and then select Add then New Item…

Step 3

Then in Add New Item from the C# Items list, select Code and then select Code File from the list next to

this, then type in the name of Dipad.cs and then Click on Add.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

3

Step 4

Then from Solution Explorer for the Solution

double-click on Dipad.cs to see the Code for

the User Control.

Step 5

You will now be in the View for the Code of Dipad.cs, within this type in the following Code:

There are using statements for the User Control, a namespace for DipadControl with an enum for the

Directions along with a class of Dipad that will represent the User Control for the Directional Pad.

using Microsoft.UI.Input;
using Microsoft.UI.Xaml;
using Microsoft.UI.Xaml.Controls;
using Microsoft.UI.Xaml.Data;
using Microsoft.UI.Xaml.Input;
using Microsoft.UI.Xaml.Markup;
using Microsoft.UI.Xaml.Media;
using Microsoft.UI.Xaml.Shapes;
using System;

namespace DipadControl;

public enum DipadDirection
{
 Up,
 Down,
 Left,
 Right
}

public class Dipad : Grid
{
 // Constants, Event, Dependency Property & Property

 // GetPath & GetDirection Methods

 // Add Method

 // Constructor

}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

4

Step 6

Then in the namespace of DipadControl in the class of Dipad after the Comment of // Constants,

Event, Dependency Property & Property type the following Constants, Event, Dependency Property

and Property:

Constants include the Paths needed to represent the different directional parts of the Directional Pad and

there is also a delegate along with an event for when a particular direction of the Directional Pad is

interacted with. There is also a Dependency Property and Property for the Foreground of the Directional

Pad.

private const int size = 3;
private const string path_up = "M 0,0 40,0 40,60 20,80 0,60 0,0 z";
private const string path_down = "M 0,20 20,0 40,20 40,80 0,80 z";
private const string path_left = "M 0,0 60,0 80,20 60,40 0,40 z";
private const string path_right = "M 0,20 20,0 80,0 80,40 20,40 z";

public delegate void DirectionEvent(object sender, DipadDirection direction);
public event DirectionEvent Direction;

public static readonly DependencyProperty ForegroundProperty =
DependencyProperty.Register(nameof(Foreground), typeof(Brush),
typeof(Dipad), null);

public Brush Foreground
{
 get { return (Brush)GetValue(ForegroundProperty); }
 set { SetValue(ForegroundProperty, value); }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

5

Step 7

While still in the namespace of DipadControl in the class of Dipad after the Comment of // GetPath &

GetDirection Methods type the following Methods:

The Method of GetPath will be used to obtain a Path from the Constants defined earlier and

GetDirection will determine if the Directional Pad has been interacted with and for which Direction.

private static Path GetPath(string value) =>
 (Path)XamlReader.Load(
 @$"<Path xmlns='http://schemas.microsoft.com/winfx/2006/xaml/presentation'>
 <Path.Data>{value}</Path.Data>
 </Path>");

private void GetDirection(object sender, PointerRoutedEventArgs e)
{
 var path = (Path)sender;
 var point = e.GetCurrentPoint(this);
 bool fire = (e.Pointer.PointerDeviceType == PointerDeviceType.Mouse) ?
 point.Properties.IsLeftButtonPressed : point.IsInContact;
 if (fire)
 {
 Direction?.Invoke(path, (DipadDirection)
 Enum.Parse(typeof(DipadDirection), path.Name));
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

6

Step 8

While still in the namespace of DipadControl in the class of Dipad after the Comment of // Add

Method type the following Method:

Add will be used to add items to the Directional Pad for each of the Directions along with Binding the

Shape that uses a Path with the Property of Foreground for the User Control.

private void Add(Grid grid,
 DipadDirection direction, string value,
 int row, int column,
 int? rowspan, int? columnspan,
 VerticalAlignment? vertical = null,
 HorizontalAlignment? horizontal = null)
{
 var path = GetPath(value);
 path.Margin = new Thickness(5);
 path.Name = direction.ToString();
 if (vertical != null)
 path.VerticalAlignment = vertical.Value;
 if (horizontal != null)
 path.HorizontalAlignment = horizontal.Value;
 path.SetBinding(Shape.FillProperty, new Binding()
 {
 Path = new PropertyPath(nameof(Foreground)),
 Mode = BindingMode.TwoWay,
 Source = this
 });
 path.PointerPressed += GetDirection;
 path.PointerMoved += GetDirection;
 path.SetValue(RowProperty, row);
 path.SetValue(ColumnProperty, column);
 if (rowspan != null)
 path.SetValue(RowSpanProperty, rowspan);
 if (columnspan != null)
 path.SetValue(ColumnSpanProperty, columnspan);
 grid.Children.Add(path);
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

7

Step 9

While still in the namespace of DipadControl in the class of Dipad after the Comment of //

Constructor type the following Constructor:

The Constructor will be used to create the look-and-feel of the User Control and will use the Method of

Add for each of the Directions needed to be displayed for the Directional Pad.

public Dipad()
{
 var grid = new Grid()
 {
 Height = 180,
 Width = 180
 };
 grid.Children.Clear();
 grid.ColumnDefinitions.Clear();
 grid.RowDefinitions.Clear();
 for (int index = 0; index < size; index++)
 {
 grid.RowDefinitions.Add(new RowDefinition()
 {
 Height = (index == 1) ? GridLength.Auto :
 new GridLength(100, GridUnitType.Star)
 });
 grid.ColumnDefinitions.Add(new ColumnDefinition()
 {
 Width = (index == 1) ? GridLength.Auto :
 new GridLength(100, GridUnitType.Star)
 });
 }
 Add(grid, DipadDirection.Up, path_up, 0, 1, 2, null,
 VerticalAlignment.Top, null);
 Add(grid, DipadDirection.Down, path_down, 1, 1, 2, null,
 VerticalAlignment.Bottom, null);
 Add(grid, DipadDirection.Left, path_left, 1, 0, null, 2, null,
 HorizontalAlignment.Left);
 Add(grid, DipadDirection.Right, path_right, 1, 1, null, 2, null,
 HorizontalAlignment.Right);
 var box = new Viewbox()
 {
 Child = grid
 };
 Children.Add(box);
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

8

Step 10

Within Solution Explorer for the Solution

double-click on MainWindow.xaml to see the

XAML for the Main Window.

Step 11

In the XAML for MainWindow.xaml there be some XAML for a StackPanel, this should be Removed by

removing the following:

Step 12

While still in the XAML for MainWindow.xaml above </Window>, type in the following XAML:

This XAML contains a StackPanel including a TextBlock and the User Control of Dipad with the Event

of Direction.

<StackPanel Orientation="Horizontal"
HorizontalAlignment="Center" VerticalAlignment="Center">
 <Button x:Name="myButton" Click="myButton_Click">Click Me</Button>
</StackPanel>

<StackPanel Margin="50" VerticalAlignment="Center" HorizontalAlignment="Center">
 <TextBlock Name="Label" HorizontalAlignment="Center"
 Style="{StaticResource SubtitleTextBlockStyle}"/>
 <local:Dipad x:Name="Pad" Height="400" Width="400"
 Foreground="{ThemeResource AccentButtonBackground}"
 Direction="Direction"/>
</StackPanel>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

9

Step 13

Then, within Solution Explorer for the Solution

select the arrow next to MainWindow.xaml

then double-click on MainWindow.xaml.cs to

see the Code for the Main Window.

Step 14

In the Code for MainWindow.xaml.cs there be a Method of myButton_Click(...) this should be

Removed by removing the following:

Step 15

Once myButton_Click(...) has been removed, type in the following Code below the end of the

Constructor of public MainWindow() { ... }:

The Method of Direction will be used with Event Handler from the XAML to display the selected

Direction. This Method uses Arrow Syntax with the => for an Expression Body which is useful when a

Method only has one line.

private void myButton_Click(object sender, RoutedEventArgs e)
{
 myButton.Content = "Clicked";
}

private void Direction(object sender, DipadDirection direction) =>
 Label.Text = direction.ToString();

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

10

Step 16

That completes the Windows App SDK

application. In Visual Studio 2022 from the

Toolbar select DipadControl (Package) to

Start the application.

Step 17

Once running you will see the Dipad Control displayed, then you can select the parts of the Directional

Pad for Up, Down, Left and Right.

Step 18

To Exit the Windows App SDK application,

select the Close button from the top right of the

application as that concludes this Tutorial for

Windows App SDK from tutorialr.com!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://tutorialr.com/

