

Windows App SDK

Dial Control

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/tutorials/

1

Dial Control

Dial Control shows how to create a Control that can be used as a Dial using Windows App SDK

Step 1

Follow Setup and Start on how to get Setup and Install what you need for Visual Studio 2022 and

Windows App SDK.

In Windows 11 choose Start and then find or

search for Visual Studio 2022 and then select it.

Once Visual Studio 2022 has started select

Create a new project.

Then choose the Blank App, Packages (WinUI

in Desktop) and then select Next.

After that in Configure your new project type

in the Project name as DialControl, then select a

Location and then select Create to start a new

Solution.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

2

Step 2

Then in Visual Studio within Solution Explorer for the Solution, right click on the Project shown below

the Solution and then select Add then New Item…

Step 3

Then in Add New Item from the C# Items list, select WinUI and then select User Control (WinUI 3) from

the list next to this, then type in the name of Dial.xaml and then Click on Add.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

3

Step 4

Then from Solution Explorer for the Solution

double-click on Dial.xaml to see the XAML for

the User Control.

Step 5

In the XAML for Dial.xaml there be some XAML for a Grid, above </Grid>, type in the following XAML:

This XAML contains a Grid with a Loaded event handler of Load along with a ContentPresenter for the

Face and Knob of the Dial which also has a RotateTransform to show the correct indicator for the Dial.

Step 6

Then, within Solution Explorer for the Solution

select the arrow next to Dial.xaml then double-

click on Dial.xaml.cs to see the Code for the

User Control.

<Grid Name="DialGrid" Loaded="Load">
 <ContentPresenter Content="{x:Bind Face}"/>
 <ContentPresenter Content="{x:Bind Knob}"
 RenderTransformOrigin="0.5,0.5">
 <ContentPresenter.RenderTransform>
 <TransformGroup>
 <RotateTransform x:Name="DialValue" />
 </TransformGroup>
 </ContentPresenter.RenderTransform>
 </ContentPresenter>
</Grid>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

4

Step 7

You will now be in the View for the Code of Dial.xaml.cs, type in the following Code below the end of the

Constructor of public Dial() { ... }:

The class for Dial represents the User Control for the Dial and includes a bool that will be used to know

when the Dial is being interacted with.

Step 8

While still in the class of Dial after the Comment of // Dependency Properties type the following

Dependency Properties:

There will also be some Errors as these refer to Properties that will be added in the next step.

These Dependency Properties refer to various Properties of the Dial that can be customised for the User

Control.

private bool _hasCapture = false;

// Dependancy Properties

// Properties

// GetRotation, GetAngle & SetPosition Methods

// Load Method

public static readonly DependencyProperty ValueProperty =
DependencyProperty.Register(nameof(Value), typeof(double),
typeof(Dial), null);

public static readonly DependencyProperty MinimumProperty =
DependencyProperty.Register(nameof(Minimum), typeof(double),
typeof(Dial), null);

public static readonly DependencyProperty MaximumProperty =
DependencyProperty.Register(nameof(Maximum), typeof(double),
typeof(Dial), null);

public static readonly DependencyProperty KnobProperty =
DependencyProperty.Register(nameof(Knob), typeof(UIElement),
typeof(Dial), null);

public static readonly DependencyProperty FaceProperty =
DependencyProperty.Register(nameof(Face), typeof(UIElement),
typeof(Dial), null);

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

5

Step 9

While still in the class of Dial after the Comment of // Properties type the following Properties:

Any Errors should now be resolved, if you continue to get them check any previous steps to see if you have

missed anything.

These Properties are for values for the User Control such as the Minimum or Maximum values for the Dial.

public double Value
{
 get { return (double)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
}

public double Minimum
{
 get { return (double)GetValue(MinimumProperty); }
 set { SetValue(MinimumProperty, value); }
}

public double Maximum
{
 get { return (double)GetValue(MaximumProperty); }
 set { SetValue(MaximumProperty, value); }
}

public UIElement Knob
{
 get { return (UIElement)GetValue(KnobProperty); }
 set { SetValue(KnobProperty, value); }
}

public UIElement Face
{
 get { return (UIElement)GetValue(FaceProperty); }
 set { SetValue(FaceProperty, value); }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

6

Step 10

While still in the class of Dial after the Comment of // GetRotation, GetAngle & SetPosition

Methods type the following Methods:

These Methods will be used to determine the rotation for the Dial with GetRotation which will be used to

set the angle with GetAngle and SetPosition will be used to constrain the angle as needed for the Dial.

private double GetRotation(double width, double height, Point point)
{
 double radius = width / 2;
 Point centre = new(radius, height / 2);
 double triangleTop = Math.Sqrt(Math.Pow(point.X - centre.X, 2)
 + Math.Pow(centre.Y - point.Y, 2));
 double triangleHeight = (point.Y > centre.Y) ?
 point.Y - centre.Y : centre.Y - point.Y;
 return triangleHeight * Math.Sin(90) / triangleTop * 100;
}

private double GetAngle(Point point)
{
 double diameter = DialGrid.ActualWidth;
 double height = DialGrid.ActualHeight;
 double radius = diameter / 2;
 double rotation = GetRotation(diameter, height, point);
 if ((point.X > radius) && (point.Y <= radius))
 {
 rotation = 90.0 + (90.0 - rotation);
 }
 else if ((point.X > radius) && (point.Y > radius))
 {
 rotation = 180.0 + rotation;
 }
 else if ((point.X < radius) && (point.Y > radius))
 {
 rotation = 270.0 + (90.0 - rotation);
 }
 return rotation;
}

private void SetPosition(double rotation)
{
 if (Minimum >= 0 && Maximum > 0 && Minimum < 360 && Maximum <= 360)
 {
 if (rotation < Minimum) { rotation = Minimum; }
 if (rotation > Maximum) { rotation = Maximum; }
 }
 DialValue.Angle = rotation;
 Value = rotation;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

7

Step 11

While still in the class of Dial after the Comment of // Load Method type the following Method:

Load will be used to set up the Event Handlers for the Dial for when the mouse is released or pressed and

when the mouse is moved or leaves the Dial.

private void Load(object sender, RoutedEventArgs e)
{
 if (Minimum > 0 && Minimum < 360)
 SetPosition(Minimum);
 DialGrid.PointerReleased += (object sender, PointerRoutedEventArgs e) =>
 _hasCapture = false;
 DialGrid.PointerPressed += (object sender, PointerRoutedEventArgs e) =>
 {
 _hasCapture = true;
 SetPosition(GetAngle(e.GetCurrentPoint(DialGrid).Position));
 };
 DialGrid.PointerMoved += (object sender, PointerRoutedEventArgs e) =>
 {
 if (_hasCapture)
 SetPosition(GetAngle(e.GetCurrentPoint(DialGrid).Position));
 };
 DialGrid.PointerExited += (object sender, PointerRoutedEventArgs e) =>
 _hasCapture = false;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

8

Step 12

Within Solution Explorer for the Solution

double-click on MainWindow.xaml to see the

XAML for the Main Window.

Step 13

In the XAML for MainWindow.xaml there be some XAML for a StackPanel, this should be Removed by

removing the following:

Step 14

While still in the XAML for MainWindow.xaml above </Window>, type in the following XAML:

This XAML contains the User Control of Dial with the Face and Knob set along with other Properties

such as the Minimum and Maximum values.

<StackPanel Orientation="Horizontal"
HorizontalAlignment="Center" VerticalAlignment="Center">
 <Button x:Name="myButton" Click="myButton_Click">Click Me</Button>
</StackPanel>

<local:Dial x:Name="Dial" Height="300" Width="300" Minimum="90.0" Maximum="275.0">
 <local:Dial.Face>
 <Ellipse Fill="{ThemeResource SystemControlHighlightAccentBrush}"/>
 </local:Dial.Face>
 <local:Dial.Knob>
 <Rectangle Height="40" Width="150" Margin="5,0,145,0"
 RadiusX="20" RadiusY="20"
 Fill="{ThemeResource SystemControlBackgroundAltHighBrush}"/>
 </local:Dial.Knob>
</local:Dial>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

9

Step 15

Then, within Solution Explorer for the Solution

select the arrow next to MainWindow.xaml

then double-click on MainWindow.xaml.cs to

see the Code for the Main Window.

Step 16

In the Code for MainWindow.xaml.cs there be a Method of myButton_Click(...) this should be

Removed by removing the following:

private void myButton_Click(object sender, RoutedEventArgs e)
{
 myButton.Content = "Clicked";
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

10

Step 17

That completes the Windows App SDK

application. In Visual Studio 2022 from the

Toolbar select DialControl (Package) to Start

the application.

Step 18

Once running you will see the Dial Control displayed, then you can rotate it to set the Value for the Dial.

Step 19

To Exit the Windows App SDK application,

select the Close button from the top right of the

application as that concludes this Tutorial for

Windows App SDK from tutorialr.com!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://tutorialr.com/

